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ABSTRACT

We have done the analysis and modelling of superconducting planar transmission
lines. Theoretically, the highest possible Q values of superconducting microstrip line was
calculated and, as a result, it provided the Q value that the experiment can aim for. As an
effort to search for a proper superconducting transmission line structure, the
superconducting microstrip line and coplanar waveguide have been compared in terms of
loss characteristics and their design aspects. Also, the research has been expanded to a
superconducting coplanar waveguide family in the microwave packaging environment.
Theoretically, it was pointed out that the substrate loss is critical in the superconducting
transmission line structures.

DESCRIPTION OF WORKS

(1) Analysis of Microstrip Lines with Alternative Implementations of
Conductors and Superconductors

The motivation for this study was to provide the theoretical basis for the
effective application of a superconductor to the micmstrip line as well as other planar
transmission lines. We have analyzed microstrip line structures in which either the strip
or the ground plane or both are made of a high Tc superconductor. The effect of
implementation of a superconductor to the strip and the ground plane has been studied
with the calculation of a conductor loss of the structure by the Phenomenological Loss
Equivalence Method(PEM). The theoretical values were compared with the
experimental results from a ring resonator which is made of a gold ground plane and a
high Tc superconductor, YBa2Cu307-x, strip. Initially, the discrepancy between the

theoretical and experimental results have been observed. This was due to incomplete
characterization of a superconductor and poor quality of a superconducting film.
Rather than using the measured surface resistance of a superconducting film and
comparing theoretical and experimental values of the loss of the structure, we took an
approach to characterize a superconducting film from the calculated and measured Q
values of a ring resonator. The values of penetration depth and surface resistance
obtained from this approach were reasonable. Also, Q values obtained from a
superconducting f'flm of the improved quality have been improved as theoretical values
suggested.

(2) Design Aspects and Comparison Between High Tc

Superconducting Coplanar Waveguide and Microstrip Line

The high Tc superconducting microstrip line and coplanar waveguide were

compared in terms of the loss characteristics and the design aspects. The quality factor
"Q" values for each structure were compared in respect to the same characteristic
impedance with the comparable dimensions of the center conductor of the coplanar
waveguide and the strip of the microstrip line. Also, the dielectric loss between the two
structures were compared since the dielectric loss becomes a critical design aspect in the

superconducting transmission line structures as the conductor loss is reduced. It is
observed that the superconducting microstrip line has an advantage over the coplanar
waveguide structure in terms of getting less conductor loss. However, the coplanar



waveguideprovidestheadvantageover the microstrip line in the aspect of the design
flexibility and the reduction of the substrate loss.

(3) Superconducting Conductor Backed Coplanar Waveguide.

The coplanar waveguide appears to be a good structure for the application of a
superconductivity because of its uniplanar nature. However, the conventional coplanar

waveguide should be modified because it is not compatible with a cooling system. As a
result, the conductor backed coplanar waveguide was proposed as a structure for the
implementation of a superconductor in the coplanar waveguide. We calculated the
conductor loss of a high Tc superconducting conductor backed coplanar waveguide.

The inductance was calculated by the modified Spectral Domain Method(SDM). Then,
the geometric factor was obtained by a numerical derivative of the inductance. This
factor was used to calculate a conductor loss by the Phenomenological Equivalence
Method(PEM). The conductor loss of the conductor backed coplanar waveguide was
compared with the one of the conventional coplanar waveguide. It was observed that
the conductor loss of the conductor backed coplanar waveguide is larger than the one of
the conventional coplanar waveguide. This is due to the additional conductor loss from
the backed ground plane of the conductor backed coplanar waveguide. However, the
decrease is less than 15 %. Therefore, it is worth to implement a superconductor to the
conductor backed coplanar waveguide. The design of the conductor backed coplanar
waveguide resonator has been completed, and the experiment is on the progress.
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ABSTRACT

Microstrip ring resonators operating at 35

GHz have been fabricated from laser ablated

YBCO thin films deposited on lanthanum

aluminate substrates. They were measured

over a range of temperatures and their

performance compared to identical resonators

made of evaporated gold. Below 60 ° Kelvin

the superconducting strip performed better

than the gold, reaching an unloaded 'Q' ~1.5

times that of gold 25 °at K. A shift in the

resonant frequency follows the form

predicted by the London equations. The

Phenomenological Loss Equivalence Method is

applied to the ring resonator and the

theoretically calculated Q values are

compared to the experimental results.

INTRODUCTION

Recent observations of low surface

resistance at microwave and millimeter wave

frequencies in thin superconducting films

[I] suggest their use for low loss/high Q

microstrip circuits. Of interest is the

surface resistance exhibited by these films

across a wide frequency range. To date,

measurements of surface resistance in the Ka

band and above have been by the cavity

technique. This technique fails to model

microstrip losses completely because it

neglects substrate losses and fails to

adequately probe _the film-substrate

interface. Microstrip resonators patterned

from thin films on microwave substrates

allow direct measurement of microstrip

losses. Several groups have made such

measurements at lower microwave

frequencies. J2,3,4] In this paper we report

on the direct measurement of losses by Ka

band microstrip resonators made from laser

ablated YBCO films on lanthanum aluminate.

Also, we calculate the Q values of the

structure using the Phenomenological Loss

Equivalence Method and invoking

superposition of the internal impedances of

the strip and ground plane of the microstrip
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line. The calculated Q value of the ring

resonator with a superconducting strip and

a normal conducting ground plane is compared

with the experimental results.

GROWTH AND PATTERNING

The superconducting films were deposited

by laser ablation of a sintered YBCO pellet

onto a heated (700°C) lanthanum aluminate

substrate in a i00 mtorr oxygen atmosphere

and then slowly cooled to room temperature

in I atmosphere of oxygen. J5] Films with

very smooth surfaces and Tc's of 89.8 have

been produced; X-ray analysis has shown that

they are c-axis aligned. The microstrip

resonators were patterned by standard

photolithography using negative photoresist

and a 'wet' chemical etchant. This etchant

was either a 3% solution of bromine in

ethanol or dilute phosphoric acid in water.

A metal ground plane was deposited by first

evaporating I00 _ of Ti for adhesion

followed by 1 micron of gold. In addition

to the resonator, each chip also had a test

bar for direct Tc testing of the patterned

film. Identical resonators were fabricated

entirely from gold (both strip and ground

plane) using evaporation and lift-off to

define the strip.

The resonators were measured using a

Hewlett-Packard 8510 Network Analyzer,

operating in WR-28 waveguide. The

microstrip circuit was mounted in a tapered

ridge waveguide to microstrip test fixture

which was mounted at the second stage of a

two stage, closed cycle helium refrigerator.

Circuit temperatures reached approximately

20°K and were monitored by a silicon diode

sensor mounted in the test fixture. The

entire cold finger and test fixture were

enclosed in a custom designed vacuum can.

Microwave coupling to the test fixture was

through 6 inch sections of WR-28 waveguide

made of thin wall stainless steel to

minimize heat conduction. Vacuum was

maintained at the waveguide feedthroughs by

means of 'O' rings and mica sealing windows.

CH2848-0/90/0000-0269501.00 © 1990 IEEE 1990 IEEE MT'I'-S Digest



THEORETICAL CALCULATION OF Q

The theoretical Q values were calculated

using the Phenomenological Loss Equivalence

Method (PEM).[6] This method is applicable

to cases where the strip conductor thickness

is on the order of a skin depth (for a

normal metal) or a penetration depth (for a

superconductor). The Incremental Inductance

Rule, which is often used Eo calculate

microstrip losses, can only be applied in

the case of shallow field penetration, which

is not satisfied in this study. Also, PEM

has the advantage of simple calculation

compared with other numerical techniques

such as the Finite Element Method. The

technique proceeds on the basis of

separately calculating the internal

impedances of the strip and the ground plane

through use of an equivalent isolated strip,

and then adding these impedances to the

external impedance of the microstrip

structure. First, the ground plane is

assumed to be a perfect conductor so that

there is no magnetic field penetration into

it as shown in figure I. A geometric factor

(GI) for the strip line is then obtained

from the magnetic field penetration into it.

This G1 factor is used to obtain an

equivalent strip; from which the internal

impedance of the microstrip line under the

assumption of perfect ground plane can be
obtained as

Zil = G,-Z.,.coth(Z,z.G,.A.G,)

where Z.,, G, and A are the surface

impedance, the conductivity of the material

and the cross sectional area of the strip,

respectively. Next we consider the strip as

a perfect conductor as shown in figure I.

Then a geometric factor (G2) is obtained for

the field penetration into the ground plane.

With the value G2, we obtain the internal

impedance of the ground plane based on the

assumption of a perfect strip,

Zi2 = G2"Z,2"coth(Z,2"q_'A'G2)

where Z,2 and _2 are surface impedance and

conductivity of the ground, respectively.

The internal impedance of the microstrip

line is obtained by adding Zlt and Z,2. We

add this internal impedance to the external

inductance and calculate the propagation

constant of the microstrip line by using a

transmission line model. It should be

emphasized that (I) and (2) are applicable

to any field penetration depth.

The conductor losses of the structure in

fig. 2 were calculated by applying the

method explained above. Then, the Q values

of each resonator were calculated by

additional consideration of substrate loss;

radiation loss was assumed negligible. For

the calculation, the value of 5.8xi0-4 was

used for the loss tangent. Since the

current is more concentrated on the strip,

the implementation of a superconductor in

the strip has more influence on the loss.

Field penetration _ I Pcr'f¢cl Conduclor

Pcrfe.ct conducloc
I

Ril L,I Ri2 Li2

Rr t*l

Figure I. Field penetration in the strip
and ground plane; for PEM calculation.
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Figure 2. 35GHz Ring Resonator Structure.

The extent of the effect of implementing a

superconductor in the microstrip line can

be different for different geometries.
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RESULTS AND DISCUSSION

In figure 3 are shown plots of SII for a

superconducting resonator at several

temperatures. This plot is of the reflected

power from the resonator in the test fixture

and is thus a measure of the loaded 'Q'.

Two features are apparent; I) the coupling

changes with temperature (in this case,

starting at near critical coupling just

below Tc and going to overcoupled at lower

temperatures), and 2) the resonant frequency

shifts with temperature. The change in the

resonant frequency vs temperature is plotted

in figure 4 along with the resonant

frequencies of a gold resonator. The

variation observed in the gold resonator

follows the form expected from thermal

contraction in the substrate. But since

accurate data on lanthanum aluminate is not

readily available, precise comparisons are

not possible. The variation seen in the

superconducting resonator is a consequence

of the dependence of the internal impedance

of the strip on the changing

normal�superconducting electron densities.

The internal inductance of a superconducting

strip over a ground plane is given by:[7]

LI, _ = _o.k*coth(t/k)

Assuming the Gorter-Casimir temperature

dependence of X:

X(T) = k o

[ i- (T/Tc)'] _

the form of the resonant frequency variation

based on the changing line inductance

matches the experimental observations.

However, attempts at numerical fitting to

extract Xo, result in _o in excess of 1

micron, indicating that the film quality may

not be at its highest.

The best circuit to date has been from a

6500 _ film with a post-processing Tc of

79°K. The unloaded Q of this circuit is

plotted against temperature in figure 5

along with the unloaded Q of an identical

gold resonator. The Q of the

superconducting circuit rises sharply below

Tc, exceeding the Q of the gold circuit at

"60°K and reaching a value of 1.5 times that

of the gold resonator at 25°K. Comparing

the experimental results with the calculated

values In the same figure, we see that for

the gold resonator, the PEM calculation

matches the experimental fairly well. The

measured superconducting 'Q', however, is

much lower than the calculated values.

Several reasons can be given for this.

First, the values for the complex

conductivity of the superconductor used in

the PEM calculation were obtained by

microwave reflectance/transmission

measurements on separate laser ablated

films. J8] It is likely that the quality of

those films was higher than the resonator

film, in part because these films were
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Figure 3. SII of the superconducting

resonator in its test fixture, at three

temperatures.
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Figure 4. Resonant frequency vs

temperature for superconducting and normal

strips.

unpatterned. In addition, substrate losses

in the PEM were calculated on the basis of

tanO=5.SXl0E-4 but accurate values for

lanthanum aluminate are not available so the

actual value may be higher or lower. It

seems likely that improvements in the

measured Q are possible with increased film

quality.

ORIGINAL PAGE IS
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CONCLUSIONS

Ring resonator circuits were fabricated

from laser ablated YBCO superconducting

films on lanthanum alumlnate to determine

transmission line losses at millimeter wave

frequencies. At 25°K the unloaded Q of the

superconducting resonator was 1.5 times the

Q of identical resonators made of gold. A

shift in the resonant frequency with

temperature follows the form predicted by

the London equation. Using the PEM we

calculated the Q values of the ring

resonator with a thin YBCO strip and a gold

ground plane. The theoretical results were

compared with experimental results of the

ring resonator of that structure. The

calculated results predict higher values of

Q than those actually observed, but improved

film quality should increase measured Q

values.

zIN

II, HOI_I_ED "Q"

M

714

Q

m

m

H ?8 IM

T_ (KELVIN)

Figure 5. Measured and calculated values

of unloaded Q for superconducting and normal

resonators.
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Abstract

This paper presents analysis of microstrip line structures in which either the strip or
the ground plane or both are made of a high Tc superconductor. The effect of
implementation of a superconductor to the strip and the ground plane is explained with the
c_culation of a conductor loss of the structure by the Phenomenological Loss Equivalence
Method(PEM). The theoretical values are compared with the experimental results from a
ring resonator which is made of a gold ground plane and a high Tc superconductor,
YBa2Cu307-x, strip.

Introduction

In this paper, we calculate and compare Q
values of the microstrip line structures in which either
the strip or the ground plane or both are a high Tc
superconductor. The motivation for this study is to
provide the theoretical basis for the effective application
of a superconductor to the microstrip line as well as
other planar transmission lines. The analytical method
in this paper is based on the Phenomenological Loss
Equivalence Method (PEM) [1,2] and the introduction
of the superposition principle of the internal impedances
from the strip and the ground plane of the microstrip
line. By using this method, we calculate the Q value of
the ring resonator which has a superconducting strip
and a normal conducting ground and compare the
results with the experimental data.

Analysis of Various Superconducting
Microstrip Line Structure

We analyze the various superconducting
microstrip line structures that have alternative
Implementations of a superconductor and a normal
Conductor into the strip or the ground plane as shown in
Fig.1. There are field penetrations even inside of the
superconductor. These field penetrations contribute to
the internal impedance and cause the conductor loss in
the microstrip line structure as shown in Fig.2. The
internal impedances from strip conductor and the
ground plane are seperately calculated by PEM. Then,
the total internal impedance is obtained by using the
SUperposition of internal impedances. The internal
Impedance of each case is obtained by considering the
eases where either strip or the ground plane is perfect.

When the ground plane is assumed to be perfect, the
field penetration occurs only in the strip conductor. In
this case, the geometric factor, say GI, of the
microstrip line is obtained from the magnetic field
penetration inside of the strip conductor. The
equivalent strip [1,2] is obtained from G1. The internal
impedance of microstrip line under the assumption of a
perfect ground plane can be obtained as Zil =

G1 .Zsl.coth(Zsl'Ol .A.G1) where Zsl, cl and A are
the surface impedance, the conductivity of the material

and the cross section (w.t) of the strip, respecively.
Next, we consider the case where the field penetration
occurs only in the ground plane. In this case, the
geometric factor, G2, is obtained from the field
penetration in the ground plane. The internal impedance
from the ground plane is obtained as Zi2 = G2.Zs2-coth

(Zs2-G2-A-G2) where Zs2 and _2 are surface
impedance and conductivity of the ground, respectively.
Then, the total internal impedance is obtained by adding
Zil and Zi2. We calculate the propagation constant of
the microstip line structure by adding this internal
impedance to the external impedance and by using the
transmission line model. Since our method is based on
the PEM, this can be applied to any field penetration
depth compared with the conductor thickness as
demonstrated in reference [1,2].

Comparison Between Microstip Lines with
Various Superconductor Implementation

The conductor losses of each microstrip line in
Fig. 1 are calculated by applying the method explained
above. Then, we calculate Q values of each strip line
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by additional consideration of substrate loss [3]. This
will give us insight to the effects of an application of
superconductor on microstrip line. The dimensions of
the structure are shown in Fig.3 (a). For the calculation,
we use the measured conductivity values of the
YBa2Cu307-x film obtained from the power
transmitted through the film and a two fluid model [4].
The calculated Q values of each structure at 35 GHz are
shown and compared in Fig.3. In this calculation, the
value of 5.8 x 10-4 is used for loss tangent. Since the
current is more concentrated on the strip, the
implementation of a superconductor in the strip gives
more influence on the loss as expected. The extent of
an effect of the implementation of a superconductor in
the microstrip line can be different for different
geometric structures of the microstrip line.

Next, we compare our calculated results with
the experimental results from the ring resonator
structure shown in Fig.4. This ring resonator has the
resonant frequency of 35.0 GHz The details of the
fabrication of this structure and the measurements are
presented elsewhere [5]. The strip of this ring
resonator is a thin film of YBa2Cu307-x deposited on
LaA1203 by a laser ablated technique. The ground
plane consists of Ti / Au. A thin Ti layer is employed to
make the deposition of the gold on the substrate and its
effect on the structure is negligible because it is thin
compared with a gold layer. Fig.5 shows the
experimental Q values and the calculated Q values with
the variation of loss tangent of the substrate. The
calculated values of Q are higher than the experimental
results. There are several factors for this discrepancy
between the experimental and theoretical results. The
ring resonator was built with a YBa2Cu307-x film
different from the film on which the conductivity values
were measured. The YBa2Cu307-x film used in the

ringresonaltor has lower Tc and lower quality than the
one used in the conductivity measurement. Also, it is
more affected by the surface roughness because it is
patterned. Another factor can be the edge current effect
on the superconducting ring resonator. Also, since the
conductor loss from the gold and superconductor
decreases at the low temperature region, the substrate
loss becomes more dominent. However, the
information on the loss tangent of the substrate is not
available at low temperature region. As we can observe
in Fig.5, the Q valties depend on the value of loss
tangent of the substrate used in the calculation. The
accurate characteristics of the substrate should be done
in order to make it meaningful to compare the theoretical
and experimental results.

experimental results of a ring resonator with the thin
YBa2Cu307-x strip and the gold ground plane. It was
found that the substrate loss becomes very critical at the
superconducting microstrip line.
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Conclusion

In this paper, we presented a theoretical analysis
of the superconducting microstrip lines with the various
implementations of a superconductor and a normal
conductor into the strip or the ground plane of the
microstrip line. By using the method presented, we
calculated the Q values of a ring resonator with the thin
YBa2Cu307-x strip and the gold ground plane. This
theoretical results are compared and discussed with
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ABSTRACT

The high Tc superconducting microstrip line and coplanar waveguide are compared in terms of the

loss characteristics and the design aspects. The quality factor "Q" values for each structure are compared
in respect to the same characteristic impedance with the comparable dimensions of the center conductor of

the coplanar waveguide and the sunup of the microstrip line. Also, the advantages and disadvantages for
each structure are discussed in respect to passive microwave circuit applications.

2. INTRODUCTION

There has been a significant effort to develop high Tc superconducting film on various substrates
for low loss microwave circuit applications[I,2]. Resonator circuits based on transmission line structures,
such as microstrip line and coplanar waveguide, have been used to obtain losses in superconducting films.
Models have also been developed to calculate losses in these films and in some cases comparison made to
experimental results[3,4]. Presently, microstrip line is more widely used because there are more design
information available about the structure as compared to coplanar waveguide structure. However, it is
expected that the coplanar waveguide should get more attention because it needs only one sided film as
opposed to microstrip line which requires double sided film.

In this paper, we compare the two superconducting transmission line structures in respect to their

application to passive microwave circuits. The loss characteristics of the two structures are compared and
discussed. In order to achieve this goal, we calculate the conductor losses of the high Tc superconducting

coplanar waveguide and microstrip line by Phenomenological Equivalence Method[5,6]. Also, the
dielectric loss between the two structures is compared since the dielectric loss becomes a critical design
aspect in the superconducting transmission line structures as the conductor loss is reduced. In conclusion,
we also discuss their advantages and disadvantages.

3. CALCULATION OF THE CONDUCTOR LOSS

The phenomenological loss equivalence method[7] is used to calculate the conductor loss of the

microstrip line and the coplanar waveguide. In this paper, only key steps will be explained. The main
idea of this method is to transform the transmission line into the single equivalent sunup which has the same
conductor loss as the original transmission line structure. For each structure, the single equivalent sunup is
obtained by considering the field penetration into the conductors[5,6].
The width of the equivalent sunup is expressed in term of G factor.
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W_ =_Lg_
G (1)

Then, the thickness of the equivalent strip is obtained

te = AG ( Microstrip line: A= W x t, Coplanar waveguide: A= S x t ) (2)

The internal impedances of the microstrip line and the coplanar waveguide are expressed as

Zi = G Zs coth(ZscrscAG). (3)

where Zs and Osc are the surface impedance and the conductivity value of the superconductor. The

surface impedance (Zs) of the superconductor is expressed as

V _sc (4)

with the two-fluid model for the conductivity _sc. Then, the propagation constants(7) of the structures are

calculated by using the transmission line model by adding the internal impedance to the external inductance
and the capacitance.

3' ( propagation constant ) = 0t (attenuation constant) + j[3 ( phase constant) (5)

Then, the quality factor "Q" value of the resonator is calculated as

I]
Q ( Quality Factor) = '-

2a (6)

4. COMPARISON OF SUPERCONDUCTING MICROSTRIP LINE
AND COPLANAR WAVGUIDE STRUCTURES

In this section, the characteristics of the superconducting microstrip line and coplanar waveguide
are compared in respect to the conductor loss, substrate loss and the flexibility of a design. Fig. 1 shows
the configurations of the microstrip line and the coplanar waveguide, and the parameters of a
superconductor. The comparison of the microstrip line and the coplanar waveguide in respect to loss
characterization should be done carefully since two structures have different configurations. The difficulty
comes from the fact that the conductor loss depends on not only the configuration but also the size of the
transmission line structure. Therefore, the dimensions of each structure in comparison should be carefully
selected with a certain design criteria for the meaningful comparison.

First, we compare the conductor losses in the microstrip line and coplanar waveguide which have
same characteristic impedance with comparable dimensions of the center conductor of the coplanar
waveguide and the strip of the microstrip line. Fig.2 shows Q values of two structures with the variation
of the frequency and the temperature. It is observed that Q values of the microstrip line are about 6.6 %

higher than those of the coplanar waveguide with the given dimensions in Fig. 2.
Next, we investigate the effect of size of structures on the comparison of Q values between two

structures. We compare three sets of the microstrip line and the coplanar waveguide as shown in Fig.3,

where the characteristic impedance of all structures is same. In each set, dimensions of the center

conductor of coplanar waveguide and the strip of the microstrip line are comparable. It is observed that
differences of Q values between the microstrip line and the coplanar waveguide increase with the increased

o N61 "2.



width of conductors and thickness of the substrate. Therefore, the use of a superconducting microstrip
line will be more effective compared with the coplanar waveguide in terms of getting high Q as the size of
the resonator becomes larger.

Now, we consider the variation of the Q values with the change of the characteristic impedance.
Fig. 4 shows the comparison of the Q values between two structures with variations of characteristic

impedance with a fixed substrate thickness of 254.0 ktm. It is observed that the differences of the Q values

between two structures decrease as the characteristic impedances of the lines increase.
As observed above, the microstrip line has higher Q values than those of the coplanar waveguide

when the sizes of the conductors in each structure are comparable. Therefore, the microstrip line has an
advantage in obtaining low conductor loss. However, the comparison can be carried out from the aspect
of the design flexibility. When the thickness of the substrate and the characteristic impedance are given in
the microwave circuit, there is only one design parameter (width of the strip) in the microstrip line while
the coplanar waveguide has two parameters (the gap and the width of the center conductor). For example,

with design conditions of substrate thickness of 127 lam and the characteristic impedance of 45, the

microstrip line and the coplanar waveguide can be designed with parameters shown in Fig.5. In this case,
the higher Q value can be obtained from the coplanar waveguide as shown in Fig. 5. Therefore, under a
certain design condition, the higher Q value can be obtained by using the coplanar waveguide.

There are other aspects to consider in the application of a superconductor to transmission lines.
First, the substrate loss should be considered. In superconducting transmission lines, the substrate loss
becomes a important factor since the conductor loss is reduced. There have been several reported values
of loss tangent of LaAIO318,9]. However, the lack of consistency of the loss tangent values in these

publications indicates the difficulty of a characterization of the substrate material for a superconducting film
at the low temperature. The calculation of the substrate loss is based on the simple expression[10] and

Loss tangent value of 8.3x10 -5 is selected for the substrate loss. Fig. 6 shows the substrate losses of the

microstrip line and coplanar waveguide with the given dimensions. It is observed that the substrate loss in
the microstrip line is higher than the one in the coplanar waveguide. Therefore, the dielectric loss becomes
more critical in the design of superconducting microstrip line compared with the coplanar waveguide. The
other consideration to make is a possible degradation effect due to the high current distribution at the edges
of the conductors. The coplanar waveguide has more conductor edges, where there are high current
distributions.as shown in the Fig.7, compared with the microstrip line. As pointed out in [11], the
conductivity of the superconductor varies with the power level. As a result, the CPW may be more
affected by the degradation of the conductivity of a superconductor.

5. CONCLUSION

The comparison between the superconducting coplanar waveguide and microstrip line was
presented. The superconducting microstrip line has an advantage over the coplanar waveguide structure in
terms of getting less conductor loss. However, the coplanar waveguide provides the advantage over the
microstrip line in the aspect of the design flexibility and the reduction of the substrate loss.
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Fig. 1. Configuration of superconducting microstrip line and coplanar waveguide.
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Microstrip Line: w = 48 I.tm, h = 127 IJ-m, Zo = 50.05

Coplanar Waveguide: w = 80 IJJ'n, s = 50 I.tm, h=127 I.tm, Zo = 50.66
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Fig. 2. Q values of the microstrip line and the coplanar waveguide.
( Parameters of the material are shown in Fig. I )

(a) Q with the variation of the frequency.
(b) Magnified view of (a) in the frequency region from 10 to 30 GHz.
(c) Q with the variation of the temperature.
(d) Magnified view of (c) in the temperature region from 40 to 70 K.
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_E]_ Microstrip line : w = 60.0 _rn, h = 127.0 IJ.m,Zo = 45

Coplanar waveguide: w= 100.0 lam, 100.0 lam, h= 127 lam, Zx)=45
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(c) Q with the variation of the temperature,

(d) Magnified view of (c) in the temperature region from 40 to 70 K.
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